年高中數(shù)學(xué)必修五教學(xué)大綱
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發(fā)揮它最大的作用呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
高中數(shù)學(xué)必修五教學(xué)大綱篇一
1、知識(shí)與技能目標(biāo):認(rèn)識(shí)平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系;
3、情感態(tài)度與價(jià)值觀目標(biāo):感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會(huì)品面直角坐標(biāo)系在解決實(shí)際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。
重點(diǎn):理解平面直角坐標(biāo)中點(diǎn)與數(shù)的一一對(duì)應(yīng)關(guān)系;
難點(diǎn):根據(jù)坐標(biāo)描出點(diǎn)的位置,以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。
教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。
一、溫故知新,導(dǎo)入新課。
游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對(duì),大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號(hào)記做有序數(shù)對(duì)(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對(duì)號(hào)。聽老師報(bào)數(shù)對(duì),若是你自己的數(shù)對(duì)號(hào),就快速站起來。反應(yīng)太慢和站錯(cuò)了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對(duì),可以唯一的確定與之對(duì)應(yīng)的同學(xué)。
二、新課教學(xué)
課本例子:我們知道數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)來表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的坐標(biāo)。例如點(diǎn)a數(shù)軸上的坐標(biāo)是-4,點(diǎn)b數(shù)軸上的坐標(biāo)是2;我們說坐標(biāo)是3.5的點(diǎn),也可以在數(shù)軸上唯一確定。
學(xué)生活動(dòng):小a說可以像教室座位一樣給任意點(diǎn)編一個(gè)橫排縱排的號(hào),小
b說我們可以每個(gè)點(diǎn)列一個(gè)數(shù)軸???
教師活動(dòng):引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點(diǎn)的位置?
結(jié)合橫縱排編號(hào)以及數(shù)軸,我們可以綜合考慮,引出一個(gè)橫縱的數(shù)軸?
得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用之前學(xué)的有序數(shù)對(duì)來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標(biāo)是3,垂足n在y軸上的坐標(biāo)是4,我們說a的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(duì)(3,4)就叫做a的坐標(biāo),記作a(3,4)
教師提問2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出b、c、d的坐標(biāo)。
教師活動(dòng):走下講臺(tái),關(guān)注學(xué)生的匯坐標(biāo)過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標(biāo)軸上各標(biāo)一點(diǎn)e、f,問:坐標(biāo)原點(diǎn)以及這兩點(diǎn)的坐標(biāo)是什么?
教師活動(dòng):引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特點(diǎn)。
得出結(jié)論:原點(diǎn)的坐標(biāo)是(0,0),x軸上的點(diǎn)的坐標(biāo)的縱坐標(biāo)為0;y軸上的點(diǎn)的坐標(biāo)的橫坐標(biāo)為0。
三、課程鞏固
師生互動(dòng):與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點(diǎn)怎么對(duì)應(yīng)坐標(biāo),以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。
“練一練”:
在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的abcdefg等點(diǎn),每組我點(diǎn)一個(gè)按坐標(biāo)序列對(duì),對(duì)應(yīng)的同學(xué)上黑板,來描出各點(diǎn)的坐標(biāo)。對(duì)一個(gè)加一分,錯(cuò)一個(gè)扣一分,得分相同的看用時(shí),時(shí)間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點(diǎn)。
教師活動(dòng):規(guī)范課堂氣氛,公平的評(píng)判,對(duì)于表現(xiàn)好的小組代表予以表揚(yáng),表現(xiàn)稍遜的學(xué)生不要?dú)怵H,給予鼓勵(lì),爭取下一次可以獲勝。
四、小結(jié)作業(yè):
思考平面直角坐標(biāo)系中坐標(biāo)與點(diǎn)的對(duì)應(yīng)關(guān)系,如何由坐標(biāo)值確定點(diǎn)的位置。下節(jié)課我們會(huì)探討這個(gè)問題。
平面直角坐標(biāo)系:平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
高中數(shù)學(xué)必修五教學(xué)大綱篇二
一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高中數(shù)學(xué)必修五教學(xué)大綱篇三
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對(duì)于過去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對(duì)于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問題的過程中,一個(gè)問題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見的測(cè)量問題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問題的解決實(shí)際問題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語言表達(dá)實(shí)習(xí)過程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問題。
高中數(shù)學(xué)必修五教學(xué)大綱篇四
要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個(gè)好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實(shí)。
想學(xué)好數(shù)學(xué),對(duì)數(shù)學(xué)感興趣
其實(shí)學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會(huì)到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對(duì)于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感
其實(shí)學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強(qiáng)學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會(huì)有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會(huì)做,你也會(huì)找到一些解題的思路和技巧。
高中數(shù)學(xué)必修五教學(xué)大綱篇五
專題八當(dāng)今世界經(jīng)濟(jì)的全球化趨勢(shì)通史概要:
當(dāng)今世界經(jīng)濟(jì)發(fā)展有兩個(gè)明顯的趨勢(shì):一是世界經(jīng)濟(jì)區(qū)域集團(tuán)化,二是世界經(jīng)濟(jì)全球化。世界經(jīng)濟(jì)區(qū)域集團(tuán)化是最終實(shí)現(xiàn)經(jīng)濟(jì)全球化的重要步驟和途徑,經(jīng)濟(jì)全球化則是區(qū)域經(jīng)濟(jì)集團(tuán)化的最終歸宿。
世界經(jīng)濟(jì)區(qū)域集團(tuán)化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強(qiáng)合作的結(jié)果,也是世界經(jīng)濟(jì)競(jìng)爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟(jì)競(jìng)爭和客觀上存在的分工。區(qū)域集團(tuán)化的發(fā)展分為三個(gè)階段:第一階段為五六十年代,世界經(jīng)濟(jì)集團(tuán)化的趨勢(shì)主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團(tuán)化成為一種世界經(jīng)濟(jì)現(xiàn)象。歐洲區(qū)域集團(tuán)化趨勢(shì)進(jìn)一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟(jì)集團(tuán)也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團(tuán)化掀起新的浪潮,進(jìn)入了較高層次的經(jīng)濟(jì)一體化時(shí)期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟(jì)集團(tuán)。
世界經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢(shì)。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟(jì)全球化的過程中的問題是:在經(jīng)濟(jì)全球化的過程中,不可避免地把資本主義固有的矛盾擴(kuò)展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機(jī)、全球性的經(jīng)濟(jì)金融危機(jī)、恐怖組織活動(dòng)猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當(dāng)今世界經(jīng)濟(jì)發(fā)展趨勢(shì)中,作為發(fā)展中國家,應(yīng)該如何面對(duì)機(jī)遇和挑戰(zhàn),成了新時(shí)期經(jīng)濟(jì)發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強(qiáng)同東盟的聯(lián)系的史實(shí)中,我們的態(tài)度是:在堅(jiān)持獨(dú)立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強(qiáng)國際的合作與交流,參與國際競(jìng)爭,抓住機(jī)遇,接受挑戰(zhàn),在國際的競(jìng)爭和合作中,提高我國的經(jīng)濟(jì)發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟(jì)發(fā)展趨勢(shì)這一經(jīng)濟(jì)現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
教學(xué)目標(biāo):
(1)知識(shí)與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟(jì)進(jìn)入“黃金時(shí)代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認(rèn)識(shí)歐洲聯(lián)盟成立對(duì)世界經(jīng)濟(jì)和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟(jì)在二戰(zhàn)后進(jìn)入“黃金時(shí)代”的共同原因,進(jìn)一步思考中國的社會(huì)主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗(yàn),學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實(shí)踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個(gè)歐洲走向聯(lián)合的過程,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
(3)情感、態(tài)度與價(jià)值觀:通過對(duì)歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識(shí)當(dāng)今國際社會(huì)國家間團(tuán)結(jié)協(xié)作的重要性,樹立國際意識(shí);通過對(duì)歐洲走向聯(lián)合的史實(shí)的歸納,得出一個(gè)別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實(shí)際,進(jìn)一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會(huì)主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。
教學(xué)課時(shí):1課時(shí)
重點(diǎn)難點(diǎn):
重點(diǎn):歐洲走向聯(lián)合過程及影響。
難點(diǎn):歐洲走向聯(lián)合的原因。
教學(xué)建議:
1、本課共有三個(gè)方面的內(nèi)容,“西歐經(jīng)濟(jì)的'黃金時(shí)代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國經(jīng)濟(jì)在恢復(fù)的基礎(chǔ)上,進(jìn)入調(diào)整增長期,被稱為西歐經(jīng)濟(jì)的“黃金時(shí)代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟(jì)一體化到政治一體化的發(fā)展趨勢(shì);“貨幣王國的世界公民”主要以歐元的流通為例,進(jìn)一步表明歐洲走向聯(lián)合的趨勢(shì)。
2、西歐經(jīng)濟(jì)高速發(fā)展的共同原因:第一,西歐各國進(jìn)行社會(huì)改革和政策調(diào)整。進(jìn)行社會(huì)改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會(huì)矛盾,穩(wěn)定社會(huì)秩序;進(jìn)行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計(jì)民生的重要工業(yè)部門。這些政策的推行,促進(jìn)了西歐經(jīng)濟(jì)的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計(jì)劃的實(shí)施,解決了西歐戰(zhàn)后經(jīng)濟(jì)發(fā)展的啟動(dòng)資金,西歐重工業(yè)在短時(shí)期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對(duì)產(chǎn)業(yè)部門進(jìn)行了改造,使勞動(dòng)生產(chǎn)率大大提高,從而有力地推動(dòng)了經(jīng)濟(jì)的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟(jì)合作的成功,歐洲經(jīng)濟(jì)不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強(qiáng)在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對(duì)二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個(gè)更加強(qiáng)大的團(tuán)體來維護(hù)自己的利益。于是在政治領(lǐng)域的合作很快便實(shí)施開來。
4、為進(jìn)一步加強(qiáng)歐洲共同體之間的經(jīng)濟(jì)合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實(shí)現(xiàn)經(jīng)濟(jì)的聯(lián)合,從而進(jìn)一步加強(qiáng)歐洲各國之間的政治合作。
二、發(fā)展的亞太
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
教學(xué)目標(biāo):
(1)知識(shí)與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟(jì)合作組織建立的過程,探討亞太國家加強(qiáng)合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴(kuò)大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識(shí)歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會(huì)議的資料,多渠道去了解和認(rèn)識(shí)apec建立的史實(shí)及影響。
(3)情感、態(tài)度與價(jià)值觀:通過對(duì)東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟(jì)一體化進(jìn)程的學(xué)習(xí)和了解,體會(huì)當(dāng)今世界國家間加強(qiáng)合作、競(jìng)爭與發(fā)展的重要性,樹立合作與競(jìng)爭的意識(shí)。
教學(xué)課時(shí):1課時(shí)
重點(diǎn)難點(diǎn):
重點(diǎn):通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織,認(rèn)識(shí)當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。
難點(diǎn):中國積極參與世界區(qū)域經(jīng)濟(jì)組織的意義。
教學(xué)建議:
1、在經(jīng)濟(jì)全球化的進(jìn)程中,亞太地區(qū)的經(jīng)濟(jì)集團(tuán)化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟(jì)集團(tuán)有兩個(gè)分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟(jì)發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個(gè)經(jīng)濟(jì)區(qū)域集團(tuán)為例,介紹了當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢(shì)。每個(gè)集團(tuán)內(nèi)部有著自身的規(guī)則的同時(shí)也不斷與其它區(qū)域集團(tuán)相聯(lián)系,從而使世界經(jīng)濟(jì)形成了密不可分的一個(gè)整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時(shí)近三分之一世紀(jì)。東盟在維護(hù)和促進(jìn)各成員國相互間的政治和經(jīng)濟(jì)合作,實(shí)現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟(jì)增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強(qiáng)了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會(huì)議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺(tái)上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟(jì)的崛起,特別是歐洲經(jīng)濟(jì)一體化實(shí)施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟(jì)的內(nèi)在動(dòng)力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價(jià)值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟(jì)互補(bǔ)性強(qiáng);相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實(shí)行經(jīng)濟(jì)一體化的必要性,又具有實(shí)行經(jīng)濟(jì)一體化的可能性。美國認(rèn)為要取得世界經(jīng)濟(jì)的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟(jì)區(qū)域集團(tuán),才能在經(jīng)濟(jì)全球化大潮中立于不敗之地。
4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對(duì)外開放經(jīng)濟(jì)政策和經(jīng)濟(jì)迅速發(fā)展為亞太區(qū)域經(jīng)濟(jì)合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟(jì)的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟(jì)合作創(chuàng)造了條件。歐共體統(tǒng)一市場(chǎng)和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟(jì)合作的方向發(fā)展。亞太經(jīng)合組織的主要活動(dòng),為各成員提供區(qū)域經(jīng)濟(jì),科技,貿(mào)易和發(fā)展等方面多邊合作的機(jī)會(huì),交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗(yàn),促進(jìn)本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運(yùn)作模式均區(qū)別于歐盟和nafta,有自身的特點(diǎn),這些特點(diǎn)適應(yīng)了apec各成員國經(jīng)濟(jì)發(fā)展的狀況和經(jīng)濟(jì)運(yùn)行模式。
三、經(jīng)濟(jì)全球化的世界
課標(biāo)要求:
(1)以“布雷頓森林體系”建立為例,認(rèn)識(shí)第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟(jì)體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識(shí)它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識(shí)其影響和作用。
(3)了解經(jīng)濟(jì)全球化的發(fā)展趨勢(shì),探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
教學(xué)目標(biāo):
(1)知識(shí)與能力:了解“布雷頓森林體系”建立的基本史實(shí),分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識(shí)它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識(shí)其影響和作用;概述經(jīng)濟(jì)全球化的發(fā)展趨勢(shì),探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對(duì)中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟(jì)全球化對(duì)本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟(jì)全球化出現(xiàn)的問題?從多角度去分析歷史問題。
高中數(shù)學(xué)必修五教學(xué)大綱篇六
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點(diǎn)
.利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
教學(xué)過程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
(精確到0.001).
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的 “思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高中數(shù)學(xué)必修五教學(xué)大綱篇七
邵
營
必修3是高中數(shù)學(xué)比較特殊的一部分內(nèi)容,既增添了新內(nèi)容——算法,老內(nèi)容統(tǒng)計(jì)和概率的內(nèi)容和安排也發(fā)生了一些變化。下面就自己的教學(xué)過程談一談對(duì)必修3的體會(huì)與反思。
3、概率的教學(xué),離開了具體案例寸步難行,要讓學(xué)生在具體案例中體驗(yàn)概率有關(guān)問題的情景,在案例中發(fā)現(xiàn)問題、解決問題,親身體驗(yàn)案例情景,以激發(fā)興趣。在實(shí)際教學(xué)中一方面要盡量創(chuàng)設(shè)情境,采用案例教學(xué)的基本方式展開教學(xué),通過大量的具體案例來幫助學(xué)生理解;另一方面要設(shè)計(jì)一些活動(dòng),讓學(xué)生經(jīng)歷統(tǒng)計(jì)的全過程,在學(xué)生合作學(xué)過程中,學(xué)生既要獨(dú)立思考,自主探索,又要在解決實(shí)際問題中與別人合作、交流。例如:在教學(xué)《確定事件與不確定事件》中,讓學(xué)生通過一系列的案例理解概念。太陽從東邊升起,拋起的籃球會(huì)下降等等一定會(huì)發(fā)生的事件就是可能事件,太陽從西邊升起,公雞下蛋等一定不會(huì)發(fā)生的事件就是不可能事件。讓學(xué)生在具體案例中體驗(yàn)概念。
2024年10月
高中數(shù)學(xué)必修五教學(xué)大綱篇八
教學(xué)目標(biāo)
1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的'能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。
重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過程。
教學(xué)過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?
(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。
已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書)an=a1+(n-1)d。
師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個(gè)問題。
問題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。
師生共同簡要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。
答案:1458或128。
例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.
(本題為開放題,沒有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)
1、 小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類比——猜想——證明的科學(xué)思維的過程。
2、作業(yè):
p129:1,2,3
教學(xué)設(shè)計(jì)說明:
1、教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。
2、 教學(xué)設(shè)計(jì)過程:本節(jié)課主要從以下幾個(gè)方面展開:
1)通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;
2)等比數(shù)列的通項(xiàng)公式的推導(dǎo);
3)等比數(shù)列的性質(zhì);
有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊
知識(shí),另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過問題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。
通過等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過類比
關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。